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Data-Driven Intervention: Correcting 

Mathematics Students’ Misconceptions, not 

Mistakes  
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In an age when reform is based on standards and instruction is based 

on research, this article gives practical advice for how mathematics 

teachers can analyze errors in student problems to create 

interventions that aid not only the individual’s development, but the 

entire class’s as well. By learning how to correct mathematics 

students’ misconceptions, rather than their mistakes, teachers have 

the potential to both target more students and increase those 

students’ conceptual understanding of the topic at hand.  From the 

post-test scores on the Common / Habitual Algebra Student 

Misconceptions – Function Families (CHASM) , a tool used to assess 

teachers’ function family content knowledge and pedagogical content 

knowledge that was given after a three-day, overnight professional 

development workshop, , teachers averaged a 43% improvement in 

their ability to identify the common misconceptions present in 

students’ scenario test example problems and in creating suitable 

interventions for that misconception.  This article (a) highlights the 

results found from ten Algebra teachers’ use of this pedagogical skill 

after a three-day overnight workshop entitled Teaching Algebra 

Concepts through Technology (TACT2), (b) identifies and categorizes 

misconceptions, and (c) provides pedagogical intervention support 

for correcting misconceptions rather than errors. As one teacher 

commented, “A minor (pedagogical) tweak resulted in a major 

revelation.”  
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Background 

 

In an age when reforms are standards-based and instruction 

is research-based, both professional education organizations 

such as the National Council of teachers of Mathematics 

(NCTM) and the National Education Association (NEA) and 

mathematics educators agree that a critical and  beneficial 

outcome of classroom assessments is the utilization of gleaned 

information to improve classroom instruction (Ball, Sleep, 

Boerst, & Bass, 2009; Brown-Chidsey & Steege, 2005; Black 

& Wiliam, 1998; Edwards, 2004; Gersten, et.al, 2009; Johnson, 

Mellard, Fuchs, & McKnight, 2006; NCTM, 2007; NEA, 2005; 

Porter, 2002; Schoenfield, 2002; Stigler. & Hiebert, 1997). 

Since the No Child Left Behind Act of 2001 and the 

Department of Education’s push to provide professional 

development opportunities for teachers that targeted the 

utilization of student data in classroom instruction (Cavanagh, 

2004; Wright, 2010), teachers have been given the 

responsibility of analyzing both standardized summative and 

formative assessments for areas of weakness, and to adjust 

their instruction accordingly.  

Despite the pressure, few teachers have been equipped to 

analyze assessment results and adapt their instruction.  A recent 

experience of Mike Klavon, a mathematics consultant for the 

Ottawa Area Intermediate School District in Michigan, 

highlighted this knowledge gap, “I have not yet been able to 

find a data report that clearly informs a teacher how to modify 

instruction that can support targeted student needs.”  (Delta 

Math Meeting, April, 14, 2010). Mike discovered that teachers 

are presented with a myriad of assessments from state and 

national sources, such as the Michigan Educational Assessment 

Program/Michigan Merit Examination (MEAP), Michigan 

Merit exam (MME), Iowa test of basic skills, and Northwest 

Evaluation Association exam (NWEA). However, the formats 

of these data reports leave the teachers stymied; Most 

summative types of assessments or yearly data analyses report 

scores as some type of a Raush Unit scale score (usually 

referred to as a RIT score), identifying the range within which 

each child falls in each particular content area. For instance, a 

RIT score of 211-220 on the NWEA for the Numbers and 
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Operations represents the student’s ability to do approximately 

113 different learning objectives ranging from “Meaning, 

notation, place value and comparisons” to “Estimation.”  A 

child is assigned a RIT score for each mathematical strand 

assessed in the standardized test. 

However, the data analysis from other tests differ. In the 

case of MEAP, scores are reported only by grade level and 

come in two general reports: (a) the percent of students that 

scored a 1, 2, 3 or 4  (1 and 2 meets adequate yearly progress) 

and (b) an item analysis identifying the percent of students in 

each grade level that answered each question correctly. MME 

offers similar building level reports but does not include an 

item analysis.  Instead, it provides a percent break down by 

strand. In the final analysis of these assessments, teachers do 

not have the information to develop interventions effectively 

because standardized assessment topics are so broad and 

interventions so wide for each individual student that many 

teachers are baffled as to how they should effectively use the 

data (Brown-Chidley & Steel, 2005; Gersten, et al, 2009). 

Recent research suggests that teachers are able to recognize 

general trends and topical weak spots, but lack the ability to 

translate this information into a suitable intervention that not 

only benefits individual student, but also allows the entire class 

to profit from instruction (Kadel, 2010; Ysseldyke, Burns, 

Scholin, & Parker, 2010). Teachers are given the data but are 

not given the proper training necessary to dissect and tailor this 

data into a viable way that effects their instruction (McMillan, 

2004).  This is true for both the standardized, large-scale 

assessments and the informal formative assessments given in 

the classroom.   

After teachers give formative, classroom assessments 

(collecting data), they generally identify problems that were 

missed by the majority of students (analyzing data) and then do 

nothing more than just re-work these problems during the next 

class session (intervention). Commonly, teachers have not been 

shown how to detect the underlying misconception(s) in the 

error(s) (Ashlock, 2010; Franco, 2008). An error refers to a 

mistake made by a student, which can occur for a myriad of 

reasons ranging from a data entry / calculation error to a lack of 

conceptual understanding.  When a student does not fully grasp 
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a concept, they create a framework for the concept that is not 

accurate.  Then, they answer problems through this framework 

(Bamberger, Oberdorf, Schultz-Ferrell & Leinwand, 2011; 

Davis & Keller, 2008; Hiebert & Carpenter, 1992).  A 

misconception is a part of a student’s framework that is not 

mathematically accurate which leads to him or her providing 

incorrect answers.  As mentioned above, teachers are usually 

not adequately shown how to properly identify these 

misconceptions.  Thus, the data received from individual 

students’ work remains individualized and can be cumbersome 

when helping the class as a whole. The resulting interventions 

and instructions can not only be time-consuming, but also 

generally ineffective for long-term retention.  

A meta-analysis of 30 studies discussing the effects of 

formative assessments on student improvement emphasized the 

importance of providing teachers with a set of skills that allow 

them to successfully link data to suitable interventions in order 

to improve mathematics instruction (Hattie, 2009). 

Responsiveness to intervention (RtI) models have begun to 

address the issue of providing teachers with the skills and 

information necessary for them to develop effective 

interventions. One of the eight suggestions from leading 

mathematics researchers in the Institute of Education Sciences 

report, Assisting Students Struggling with Mathematics: 

Response to Intervention (RtI) for Elementary and Middle 

Schools (2009), is to provide teachers with specific data that 

intentionally focus on grade level objectives; however, they 

conclude that “at the current time, this research is 

‘underdeveloped’” (p. 13).  

The authors of a U.S. Department of Education, Office of 

Planning, Evaluation and Policy Development (2011) report 

entitled Teachers’ Ability to Use Data to Inform Instruction: 

Challenges and Supports wrote that “Given the importance that 

federal education policy places on teachers’ data literacy and 

ability to draw instructional implications from data, additional 

research and development in this area are warranted” (p. xii). 

Thus, although teachers have become adept to collecting and, 

to an extent, analyzing data, they are not analyzing this 

information for effective interventions that promote student 

success (Diamond & Cooper, 2007); Hamilton, Halverson, 
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Jackson, Mandinach, Supovitz, & Wayman, 2009; Holmes, 

Finn, Blower & Chavarria, 2013; Popham, 2001). Hence, 

professional development programs are needed to provide the 

set of skills necessary for teachers to take raw data in varying 

forms and evaluate it in a manner suitable for correctly 

recognizing patterns with student difficulties and then 

appropriately developing the interventions that address them 

(Gold, 2005). 

 

Assessing Misconception – Instruments and Participants 

 

Instrument 

 

The Common / Habitual Algebra Student Misconceptions– 

Family Functions (CHASM) tool is one instrument that 

assesses teachers’ function family content and pedagogical 

content knowledge. Content knowledge refers to algebra 

function families of varying types from linear to exponential. 

Pedagogical content knowledge includes the depth at which 

teachers correct student misconceptions in those areas. 

CHASM’s depth levels are defined in accordance with Webb’s 

(2005) depth of knowledge (DOK) levels. A low level depth of 

pedagogical content knowledge (DOK1) equates to teachers 

who correct student errors, rather than misconceptions, and 

provide interventions that are algorithmic in nature. The second 

depth of pedagogical content knowledge (DOK2) is shown 

when a teacher corrects a student misconception in an 

algorithmic manner. The highest depth of knowledge level 

(DOK3) is displayed when teachers identify and target the 

misconception conceptually.   

The CHASM assessment tool is a derivative of the 

University of Louisville’s Diagnostic Teacher Assessment for 

Mathematics and Science, the only quantitative assessment for 

secondary teachers’ pedagogical content knowledge (Bush, 

2009; Holmes, 2012). In contrast, Deborah Loewenberg Ball’s 

Learning Mathematics for Teaching Project assessment is 

geared towards elementary and middle school teachers (Hill et 

al, 2008; Hill, Dean, & Schilling, 2007; Loewenberg-Ball, 

Bass, Hill, 2011).  Content validity was confirmed by a team of 

7 experts, made of up mathematicians, mathematics educators 
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(including researchers), and algebra teachers; these experts 

established the algebra content misconceptions and alignment 

to the common core standards. (Wilson et al., 2007). Two 

statistical methods were used to confirm assessment reliability: 

Cronbach’s alpha for internal consistency (.85) and intra-class 

reliability coefficients for scorer reliability (.97). 

 

Participants 

 

In this workshop, ten certified secondary school 

mathematics teachers from a school district in Michigan 

voluntarily participated in a three-day, overnight workshop 

entitled Teaching Algebra Concepts through Technology 

(TACT2). These teachers stated they had numerous reasons for 

volunteering, including: (a) learning practical tools and 

examples to help excite their students, (b) learning about an 

user friendly inquiry-based program that could enhance 

increase learning and cut down on their work load and (c) 

obtaining some free interactive software and student accounts. 

What became apparent through discussions during the 

workshop was that these teachers wanted help in reaching a 

population of students whom had become more disengaged and 

who were lacking in requisite skill sets.  

Training on conceptual understanding of pedagogical 

concepts, how to help students understand more conceptually, 

and pedagogical “best practices” were delivered primarily 

through HeyMath! which is an interactive online E-learning 

program from Singapore (Sankaran & Rajan, 2013).  These 

teachers took the CHASM pretest prior to the professional 

development and a posttest immediately following.  It is these 

results that are highlighted herein. 

 

Correcting Misconceptions, not Mistakes 

 

Many studies have been undertaken in order to investigate 

the types of misconceptions that students encounter in Algebra 

(An, 2004; Clement, Narode & Rosnick, 1981; Fuchs & Menil, 

2009 Jurkovic, 2001) and on the importance of reviewing 

student errors for increased student conceptual understanding 

(Durkin 2009; Grobe & Renkle, 2007; NCTM, 2000, 2007).  
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However, few studies focus on the skills necessary to identify 

and correct these misconceptions.  Even fewer explain how to 

practically apply the skills to data-driven instruction.  The 

emphasis has been on student conceptual development during 

instruction.  However, while conducting a three-day, overnight 

workshop on function families, we found that by equipping 

teachers with the skill to diagnose student misconceptions on 

exams, it aided in the correcting of student work for future 

instruction. Misconceptions are derived from problems due to 

conceptual misunderstandings. Mistakes are derived from 

computational or minor mishaps. Errors are either; teachers 

must discern if errors are misconceptions or mistakes A minor 

tweak in the way teachers looked at student work produced a 

major revelation in how they approached student “mistakes.” 

During the workshop, these ten teachers wrote lesson plans 

based upon the diagnosed misconceptions. First, however, they 

had to become proficient at diagnosing misconceptions. In 

order to do this, the teachers were given a series of sample 

student problems that contained common Function Family 

misconceptions. These misconceptions were those that (a) 

research showed students habitually made when working with 

linear and quadratic equations, or when interpreting 

exponential and polynomial graphs and (b) aligned with the 

National Common Core Standards.  Teachers were told to 

identify the error and explain how they would correct the 

misconception. The errors were either computational or 

conceptual in nature. Computational errors, such as accidently 

stating 3x2 * 2 = 6x or 4 * 5x = 21x instead of 6x2 and 20x, 

respectively, require teachers to direct students’ attention to 

their mistake. However, conceptual errors, such as consistently 

adding instead of multiplying (e.g., stating 3x * 2 = 5x or 4 * 

5x = 9x) require teachers to determine the underlying cause or 

misconception involved and address the misconception when 

communicating with students. For conceptual errors, teachers 

direct – through their written or verbal comments -- students’ 

attention to correcting the misconception.   

In order to correctly and efficiently correct misconceptions, 

however, teachers have to discover the underlying pattern 

(systematic errors) that unites every mistake in a number of 

different student-scenario examples. The test problem below is 
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a sample problem worked during the workshop (Figure 1); in it, 

the students in the problem gave incorrect responses to “write a 

possible equation for the polynomial shown below.”  Although 

each made only a few errors, the underlying misconception was 

their inability to realize that an even degree of the leading term 

produces a graph with the same end behavior in both 

directions. 

 
Figure 1. Chasm 4.3, Item 10 . 

 

At first glance, a teacher may think that the students did not 

understand leading terms. However, interpreting the data shows 

that this isn’t the case. In each student’s response, the degree of 

the leading term was bigger than the preceding terms:  x3 is 

greater than a constant; x5 is greater than x3, x7 is greater than 

nothing.  Hence, as a teacher of these students, reviewing 

leading terms would be an ineffective intervention or 

pedagogical strategy.  Although JoNisa’s response seems as if 

she doesn’t understand characteristics of even and odd 

functions, her mistake is actually in reversing these 

characteristics; according to CHASM notes, she simply  

attributed the end behaviors of even functions to an odd 

function.  An intervention that would broadly sweep the 

classroom and possibly help as many students as possible 

would be to target the characteristics of even / odd exponents -- 
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staying away from symmetry. The underlying conceptual 

problem is relatively straight forward; these students simply 

reversed the concepts but were correct otherwise in their 

interpretation of the polynomial.   

A secondary misconception lies in understanding the 

concept of a polynomial.  Because a polynomial is written as 

the sum of terms of varying degree, a polynomial with mixed 

parentage would have both even and odd degree terms 

included.  Although Louis understood that the graph was 

represented algebraically by more than one term neither he nor 

A’Lexa understood the role of odd and even exponents.  

However, we should caution that by doing so, we are looking at 

these student errors in a vacuum. It may be that Louisa and 

A’Lexa have different misconceptions, such as mistakenly 

writing an equation to identify the leading term of the 

polynomial. Identifying student misconceptions from their 

work is a matter of identifying and categorizing patterns. Thus, 

it is extremely important when developing assessments to have 

multiple questions targeting the same concept in order to better 

classify misconceptions.  However, if the class as a whole is 

systematically making the same mistake, this constitutes a class 

misconception and should be addressed accordingly. It is 

important to note that as a teacher learns to identify major 

misconceptions and not each individual student error, he/she 

will need to make judgment calls as to what gets addressed in 

the class setting and what becomes an individual student 

intervention.  In the example above, addressing A’Lexa’s 

negative coefficient – computational error – individually 

intervening would be appropriate. 

Research supports the pedagogy of identifying 

misconceptions rather than student mistakes. “Borasi argued 

that(conceptual) errors could be used to foster a more complete 

understanding of mathematical content, as a means to 

encourage critical thinking about mathematical concepts, as 

springboards for problem solving, and as a way to motivate 

reflection and inquiry about the nature of mathematics” (Tirosh 

& Tsamir, 2005, p. 30). Unfortunately, many teachers still 

correct mistakes rather than misconceptions. Figure 2 below 

from the morning of Day 2 of the workshop is an example of 

this. Notice how not detecting the underlying misconception 
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can cause teachers to be scattered, inconsistent, or erratic when 

implementing a reasonable intervention. Each student would 

need to be re-taught the entire lesson. 

 
Scenario: Teacher responses 

 

A) The student forgot the 1 before the 

decimal percent. Although he multiplied 

by 5 to express the repeated number 

 

A) Students are substituting values into 

the equation incorrectly A=P (1+r)n 

 

A) Students do not understand 

exponential growth 

 

A) I know these aren’t right, but I’m not 

sure how… 

 

A) Students don’t understand exponents 

 

A) Students don’t understand percentage 

interest. 

 

A) They don’t know how to use the 

formula correctly 

  
Figure 2. Algebra teacher responses: correcting mistakes rather 

than misconceptions. Al 

 

Minor tweak resulted in a major revelation 

 

The good news is that in this workshop, the change from 

correcting student mistakes to correcting student 

misconceptions was a minor tweak.  Once pointed out, teachers 

quickly become adept at discovering underlying 

misconceptions in student work and creating effective 

interventions / instructional lesson plans.  From the post-test 

scores on the Common / Habitual Algebra Student 

Misconceptions– Family Functions (CHASM), teachers 

significantly (p < .01) increased from 188 to 268, a percent of 

increase of (43%), in their ability to identify the common 

misconception in several examples of students’ function family 

problems and the ability to create suitable, conceptual-based 

interventions.  As a group, the ten teachers improved on 75% 

of the test (12 of the 16) items.  In only three days, all of the 

teachers increased their ability to identify misconceptions from 

36% to 61% (p < .01).  Once misconception were identified, 

their ability to correct misconceptions conceptually rose from 

47% to 63% (p < .01).  It is evident that more attention is 

needed in focusing on providing teachers with effective 
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interventions; nevertheless, the skill was easily adopted in a 

short amount of time. As one teacher commented, “A minor 

tweak resulted in a major revelation.”  

 

Pedagogical Interventions – Correcting Misconceptions 

  

As teachers correct their students’ papers, they need to 

think about what errors are present. Are they conceptual, 

thereby misconceptions? Or are they computational and 

thereby mistakes? Teachers should ask the following:  Why are 

they occurring? Is the problem a vocabulary/definition 

problem? Could it be a calculation/computational error? Or is it 

a true conceptual problem?  In creating the most effective 

interventions, a teacher should make certain that s/he is 

covering errors that the majority of students are making – 

discerning the underlying misconception of those errors, and 

addressing them accordingly.  The next section defines and 

identifies three different types of misconceptions and how to 

match appropriate responses to interventions with each 

different type. 

 

Matching Interventions to Types of Errors 

 

After analyzing over 300 responses from teachers in the 

workshop correcting student errors, we found that causes of 

student errors could be broken into three distinct categories: 

vocabulary misconceptions, computational errors, and 

erroneous belief misconceptions.  A vocabulary misconception 

centers on mistaken terminology or language; a computational 

error centers around calculation mistakes; and erroneous belief 

misconceptions are inaccuracies in mathematical thinking.  

Below are examples of each type of error/misconception and 

appropriate teacher interventions for each category are 

exhibited. The suggested interventions come primarily from 

two sources, a compilation of teacher tested interventions from 

the last 4 years of the TACT2 workshop and misconception 

intervention best practices (Ashlock, 2010; Franko, 2008). 
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Vocabulary misconceptions   

 

A vocabulary / definition error would be addressed by 

focusing on the part of the language that is misunderstood, not 

by teaching an entire lesson on the concept under investigation. 

For instance, if a teacher asks students to identify the zeros in 

the functions below (Figure 3), what could they conclude? 

 

 
Figure 3. CHASM 4.3, Item 13 

 

In interpreting the above data, one would be correct in 

concluding that Karla and Jason are dealing with a vocabulary 

problem of defining ‘zeros’ vs. ‘holes.’ There is no need to 

design an elaborate intervention or revisit the entire concept of 

‘zeros’ again. This is an example of a minor intervention, and a 

common student vocabulary error.  As before, we note that 

Jason is uncertain about how to explain a ‘zero’ in a ‘hole’ 

environment.  Depending upon if other students are similarly 

stymied, this conceptual error would be addressed individually. 

In the workshop, a teacher commented that a similar situation 

happened in her class. However, she went the route of 

completely teaching the ideas behind roots and zeros again. As 

she did, she had students working in pairs, and overheard one 

student tell his partner that he wished she’d stop repeating the 

same topics when he had just confused the definition. When the 

partner agreed, it made her think that a complete reintroduction 

to the concepts was unnecessary.  During the workshop, as we 
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discussed this particular item and other similar ones such as 

percent of increase /decrease and interpreting slope, it became 

clear that vocabulary misconceptions was a category by itself. 

 

Computation errors 

 

Computational errors are calculation errors.  Though 

seemingly simple to identify and address, they are not because 

a teacher has to decide if they are actual calculational 

inaccuracies or signs of an erroneous belief.  In the workshop, 

teachers consistently got these problems wrong, finding them 

difficult to identify. The discussions in the workshop helped to 

the participating teachers highlight computational errors in the 

given problems. Additionally, the teachers described actual 

examples from their own classrooms which added even more to 

the discussions. These instances that participants drew from 

real teaching practice helped to solidify the veracity of the 

concept of computational errors being a major classification of 

student error. Figure 4 is an example of a true computational 

error. 

 
Figure 4. CHASM 4.3, Item 1. 
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In this case, Jared and Chelsea have only miscalculated.  

There is no true misconception in evidence.  Thus, no 

intervention is necessary unless one discovers that their 

students constantly repeat the same computational error. 

Remember, in identifying misconceptions, teachers need to 

think about systematic errors or patterns. 

 

Erroneous beliefs 

 

Still, the computational errors must be scrutinized in case 

they are erroneous beliefs (conceptual errors) in masquerade.  

For instance, if students did not realize that there was no real 

number solution to the square root of a negative number, and 

presented the answers above as real solutions, then a different 

instructional intervention is needed. Erroneous beliefs are the 

crux behind common student misconceptions.  This was born 

out in the workshop. From examining student work and the 

workshop teacher’s responses, it was discovered that there is 

usually a common theme that runs throughout students’ errors.  

Figure 5 is an example of the erroneous belief misconception.   

 

 
Figure 5. Chasm 4.2, Item 9.  

 

It would appear that students did not understand asymptotic 

limits of exponential functions and that this is the key 

conceptual error. Endpoints, while still an issue, are not a major 

priority. The idea of ‘changing direction’ also is not a critical 

matter. From past workshops, we’ve discovered that teacher 



Holmes, Miedema, Nieuwkoop, and Haugen 

38 

notes on individual student papers are able to address these 

secondary concerns appropriately. To find the key 

misconceptions, we suggest that teachers look at all of their 

students’ work on a single concept, and then determine what 

errors they have in common. 

A good way to discover what students may be thinking 

when examining their answer for a particular problem is simply 

to ask them.  Research suggest having secondary students 

explain the “why” of a problem increases not only their own 

understanding, but the resulting data increases teachers’ 

effectiveness in plugging gaps in student misconceptions 

(Garofalo & Lester, 1985; Martinez 2006; Van der Stel & 

Veenman, 2010).  Thus, including the “What was your 

rationale?” or “Explain why you responded as you did” to 

classroom problems might be a tremendous benefit for data 

driven instruction. These answers would provide insight into 

students’ thought process, thus helping to pinpoint underlying 

misconceptions.  This next section offers suggestions for 

collecting data that supports finding student misconceptions. 

 

Uncovering Misconceptions 

 

From both the workshop and best practices, useful tips for 

diagnosing student misconceptions follow.  Teachers can make 

assessments (whether a graphic organizer, class worksheet, or 

quiz/test) thematic.  All problems that address one idea should 

be clumped together; questions that address another topic are 

similarly grouped.  For example, suppose a class was working 

on function family graphs.  The assignments would be created 

around the unit / lesson standards or the “take away” topics 

taught in that unit / lesson.  A “take away” topic is the one or 

two concepts that students need to understand at the end of the 

lesson.  A teacher should ask:  What do students really need to 

“take away” from this lesson?  Once the lesson has been 

distilled down, what are the “take-away” points?  Whether a 

teachers creates their assignment around the standards or “take 

away” points, our research suggests that they should group all 

items in the assignment or of an individual section (multiple 

choice, open ended, word problems) around that topic.  
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Figure 6 below is an example of a delineated topical two 

part assignment.  Items are centered on specific “take away” 

topics. Notice that the metacognitive “Why” questions are 

asked in this illustration.   

 

 
Figure 6. Example from HeyMath! of a typical question with 

metacognitive “Why?” questions. Adapted from 

http://www.heymath.com/heymath/ 
 

Conclusions 

 

This study identified and categorized misconceptions and 

provided pedagogical intervention support with examples for 

correcting misconceptions rather than errors, in an attempt to 

provide teachers with the knowledge necessary for 

implementation.  As a response to intervention and a data-

analysis pedagogical tool, we believe it will be invaluable in 

the classroom for increasing student understanding of 

mathematical problems. However, further study is needed to 

examine the longitudinal effects of this pedagogical practice on 

student academic success. The intent of this article is to 

enlighten educators for action. The contents herein can be used 

as a springboard for professional development, workshops, and 

pre-service teacher education on the how to of correcting 

http://www.heymath.com/heymath/
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misconceptions rather than mistakes in student work.  

Detecting patterns of misconceptions is not always an intuitive 

process, but it can be acquired through ideas described above in 

a short amount of time. Teachers were able to discern between 

mistakes and misconceptions with up to 43% improvement at 

the end of just one three-day workshop. Our hope is that other 

teachers will benefit from using this pedagogical approach in 

their classrooms. All in all, identifying and correcting 

misconceptions, not mistakes, is a skill well worth developing 

for teachers.    
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