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An Alternative Method to Gauss-Jordan Elimination: 
Minimizing Fraction Arithmetic 

Luke Smith & Joan Powell 
 

 

When solving systems of equations by using matrices, many teachers present a Gauss-Jordan elimination 

approach to row reducing matrices that can involve painfully tedious operations with fractions (which I will call 

the traditional method). In this essay, I present an alternative method to row reduce matrices that does not 

introduce additional fractions until the very last steps. The students in my classes seemed to appreciate the 

efficiency and accuracy that the alternative method offered. Freed from unnecessary computational demands, 

students were instead able to spend more time focusing on designing an appropriate system of equations for a 

given problem and interpreting the results of their calculations. I found that these students made relatively few 

arithmetic mistakes as compared to students I tutored in the traditional method, and many of these students who 

saw both approaches preferred the alternative method.  

 

 

When solving systems of equations by using 

matrices, many teachers present a Gauss-Jordan 

elimination approach to row reducing matrices that can 

involve painfully tedious operations with fractions 

(which I will call the traditional method). In this essay, 

I present an alternative method to row reduce matrices 

that does not introduce additional fractions until the 

very last steps. As both a teacher using this alternative 

method and a tutor working with students instructed in 

the traditional method, I have some anecdotal 

experience with both.  The students in my classes 

seemed to appreciate the efficiency and accuracy that 

the alternative method offered them. Since they were 

freed from unnecessary computational demands, they 

were instead able to spend more time focusing on 

designing an appropriate system of equations for a 

given problem and interpreting the results of their 

calculations. I found that these students made relatively 

few arithmetic mistakes as compared to students I 

tutored in the traditional method, and many of these 

students who saw both approaches preferred the 

alternative method. I find (and it is likely true for 

students) that it takes significantly less time to row 

reduce a matrix using the alternative approach than the 

traditional approach. Teachers are free to choose a 

preferred method (some may want to emphasize 

practice with fractions), but I believe this alternative 

method to be a strong alternative to the traditional 

method since students will perform significantly fewer 

computations and teachers can extend the technique to 

finding the inverse of matrices.  

Many students are not proficient at solving 

problems involving fractions, and this lack of 

proficiency is not restricted to any one grade band. For 

example, when Brown and Quinn (2006) studied 143 

ninth graders enrolled in an elementary algebra course 

at an upper middle-class school, they found that many 

of the students had a lack of experience with both 

fraction concepts and computations. In their study, 

52% of the students could not find the sum of 5/12 and 

3/8, and 58% of the students could not find the product 

of 1/2 and 1/4. Unfortunately, students’ difficulty with 

fractions can persist into postsecondary education. 

When studying elementary education majors at the 

University of Arizona, Larson and Choroszy (1985) 

found that roughly 25% of the 391 college students 

incorrectly added and subtracted mixed numbers when 

regrouping was involved. Hanson and Hogan (2000) 

studied the computational estimation skills of 77 

college students who were majoring in a variety of 

disciplines; many of the students in their study 

struggled with problems that involved fractions and 

became frustrated with the process of finding common 

denominators. They noted that a few students in the 

lower performing groups added (or subtracted) the 

numerators and denominators and did not find common 

denominators. Commenting on the lack of 

understanding commonly associated with fractions, 

Steen (2007) observed that even many adults become 

confused if a problem requires anything but the 

simplest of fractions. 

Luke Smith has several years of experience teaching high school 

mathematics. He currently manages a math and science tutoring 

lab at Auburn University Montgomery. 

Joan Powell is a veteran professor with over 26 years of college 
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The use of matrices to solve systems of equations 

has long been a topic in high school and college 

advanced algebra and precalculus algebra courses. An 

increasing number of colleges and high schools teach 

Finite Mathematics, sometimes as a core course option. 

This means that increasing numbers of college and 

college-bound students are introduced to solving 

systems of equations by converting them into matrices 

and then row reducing them. For example, at the 

university where I teach, childhood education majors 

see this topic in a required core course. Fraction skills 

may be a reasonable requirement for all of these 

students, but I believe this is not the best context for 

practicing numerous fraction computations, 

particularly for students who are not typically math or 

science majors.  Indeed, students’ difficulties with 

fractions lead many instructors to carefully pick 

matrices that do not involve fractions during the 

intermediate steps of the traditional approach to row-

reducing a matrix. However, the alternative method 

discussed below is similar to traditional Gauss-Jordan 

elimination but allows instructors to use any system of 

linear equations over the rational numbers because it 

prevents new fractions from appearing until the very 

last steps.  Furthermore, the alternative method 

involves a similar number of computations as the 

traditional method, which decreases the likelihood of 

arithmetic mistakes.  

When deciding which approach students should 

learn in order to row reduce matrices, teachers need to 

consider their motivation for showing students how to 

row reduce matrices. Typically, we want our students 

to be able to solve resource allocation problems, 

geometric problems, or other types of applications by 

finding the values of the variables in a system of 

equations and then correctly interpreting the results of 

their findings. In other words, we are interested in 

showing our students how to solve problems where 

row reduction of matrices is an appropriate strategy. 

Therefore, if we have two mathematically sound 

approaches for finding the values of the variables, one 

whose computational demands may distract from the 

main concept and the other that involves fewer 

computations and is less distracting, it seems 

reasonable to show students the method that will free 

them to focus on setting up the problem and 

interpreting the results rather than being immersed in 

the intermediate calculations. Such an instructional 

decision aligns with the National Council of Teachers 

of Mathematics (2000) teaching principle (2000) that 

advocates the skillful selection of teaching strategies to 

communicate mathematics.  

The alternative method is not a new approach, but 

after reviewing many Finite Mathematics and Linear 

Algebra textbooks from a variety of publishers, I found 

that the vast majority of the texts do not clearly present 

to students with a method of solving a system of 

equations without incurring fractions in the 

intermediate steps (Goldstein, Schneider, & Siegel, 

1998; Poole, 2003; Rolf, 2002; Uhlig, 2002; Young, 

Lee, & Long, 2004). Even the texts used at my 

university (Barnett, Ziegler, & Byleen, 2005; Lay, 

2006) do not demonstrate the alternative method. 

Warner and Costernoble (2007), Shifrin and Adams, 

(2002), and Lial, Greenwell, and Ritchey (2008) were 

the only texts that I found that clearly presented the 

alternative method. In all of the aforementioned books 

no characteristics seemed to predict whether or not the 

alternative method was presented and they all covered 

roughly the same concepts that are traditionally 

presented in Finite Mathematics and Linear Algebra 

courses. For the benefit of students and teachers who 

have only been exposed to the traditional Gaussian 

methods of row-reduction, the remaining portion of the 

article develops the alternative technique. The 

following paragraphs describe operations with matrices 

of the type provided below (Figure 1).  
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Figure 1. A typical 33×  augmented matrix. 

 
The most common method that students are taught 

Gauss-Jordan-elimination for solving systems of 

equations is first to establish a 1 in position a1,1 and 

then secondly to create 0s in the entries in the rest of 

the first column. The student then performs the same 

process in column 2, but first a 1 is established in 

position a2,2 followed secondly by creating 0s in the 

entries above and below. The process is repeated until 

the coefficient matrix (Figure 1) is transformed into the 

identity matrix, where 1s are along the main diagonal 

and 0s are in all other entries (Barnett, Ziegler & 

Byleen, 2005). Some teachers use a variation of Gauss-

Jordan elimination called back-substitution that 

simplifies the process somewhat for solving systems of 

equations; however, back-substitution can not be used 

to find inverses of matrices.  

The traditional approach of finding first the 1s for 

each of the diagonal entries and secondly finding the 0s 

for the remaining elements in each corresponding 

column becomes extremely cumbersome when 
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fractions are involved. Students who are not 

comfortable or proficient with fractions may become 

frustrated with these types of problems. Asking 

instructors to teach students a method that they are 

only able to use to solve a limited class of problems 

does those students a disservice. The alternative 

Gaussian approach where 1s on the diagonal are not 

obtained until the very end of the problem is a nice 

alternative to the traditional method. In my opinion, the 

strength of this approach is that (a) no new fractions 

are introduced until the very last steps and (b) this 

process can still be implemented to find the inverse of 

a matrix (in contrast to the back-substitution method). 

To set up this method, I review an approach for 

solving a system of two equations in two variables. For 

this smaller system, teachers commonly teach the 

addition method, which relies on multiplying each 

equation by the (sometimes oppositely signed) 

coefficients in the other equation and then adding the 

two equations to eliminate the target variable. Consider 

the following problem (Example 1 in Figure 2). 

 

Step 1: We can choose to eliminate either the x or y variable. For this example, we 

will eliminate the x variable.  152

8   23

−=−

=+

yx

yx

 

Step 2: To eliminate the x variable, we will multiply the top row (R1) by 2 and the 

bottom row (R2) by -3. Then we will add the two equations together to create a new 

equation. 

 Note: We know that we are proceeding in the correct direction because we 

successfully eliminated the x variables when we added the equations together.  
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Step 3: At this point, we simply solve for y and substitute our solution back into 

either equation to solve for x, checking both in the other equation. 
      2

1

=

=

x

y

 
Figure 2. Solving Example 1, a 2×2 linear system.

 
The process of eliminating the x variable in the 

above problem (Figure 2) by producing opposite 

coefficients of x is used in the alternative method for  

row-reducing matrices. Next, I show how to use the 

above idea to solve a typical system of n equations 

with n variables without incurring any fractions 

(Example 2 in Figures 3a and b). 

Step 1: Recopy from the original system of equations into augmented matrix form. 
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Step 2: Multiply R1 and R2 in such a way that you create oppositely signed common 

multiples in entries a1,1 and a2,1 as shown below.  

)3(7132

)2(5243

−−

−
 

Adding and then substituting the sum for row 2 results in a 0 in entry a2,1. 

311170

21396

10486

−−−

−−+

−−−−
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Figure 3a. Step-by-step process for solving Example 2 using the alternative Gaussian approach. 
Note: The process in the left column produces the matrix in the right column for each step.
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Step 3: Multiply R1 and R3 in such a way that you create oppositely signed common 

multiples in entries a1,1 and a3,1.    

)3(12214

)4(5243

−

−
 

Adding and then substituting the sum for row 3 results in a 0 in entry a3,1. 

1614130

366312

2081612

−−

−+

−−−−
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Figure 3b. Step-by-step process for solving Example 2 using the alternative Gaussian approach. 

 

It is not important what values are produced on 

the main diagonal until the last step of this 

process. So, I will not divide the top row by 3 to 

get a value of 1 in position a1,1 which would 

produce fractions in this intermediate step. Now, I 

will must establish 0s in the entries above and 

below a2,2 (Figure 4).  

 

Step 4: Multiply R1 and R2 in such a way that you create oppositely signed common 

multiples in entries a1,2 and a2,2.   

)4(311170

)17(5243

−−−
 

Adding and then substituting the sum for row 1 results in a 0 in entry a1,2. 

3930051

1244680

85346851

−

−−−+  
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Step 5: Multiply R2 and R3 in such a way that you create oppositely signed common 

multiples in entries a2,2 and a3,2.   

)17(1614130

)13(`31170

−−

−−−−
 

 Adding and then substituting the sum for row 3 results in a 0 in entry a3,2. 

393000

12442210

85132210

−

−−−+  
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−

−−−

−

67522500

311170
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Figure 4. A continuation of the solution of Example 2 using the alternative Gaussian approach.

 
 

Having now established 0s in the appropriate 

positions in columns 1 and 2 (Figure 4), we repeat the 

process to establish 0s in column 3. However, it would 

be useful at this point to reduce the numbers in row 3 

before we establish the last set of 0s (See optional step 

in Figure 5).  
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Optional Step: Since 675 is a multiple of -225, simplifying R3 by dividing the entire 

row by “-225” (or multiplying by the reciprocal) will make the arithmetic easier from 

this point on:   

)225(67522500 1−−       →         3100 −  

Note: Dividing a row by a common factor simplifies the arithmetic by producing 

smaller values for each entry. 
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−

−−−
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3100
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Step 6: Multiply R1 and R3 in such a way that you create oppositely signed common 

multiples in entries a1,3 and a3,3.   

)30(3100

)1(3930051

−−

−
 

Adding and then substituting the sum for R1 results in a 0 in entry a1,3. 

510051

903000

3930051

−+

−
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Step 7: Multiply R2 and R3 in such a way that you create oppositely signed common 

multiples in entries a2,3 and a3,3 

)1(3100

)1(311170

−

−−−
   

. And then substituting the answer in for R2 results in a 0 in entry a2,3. 

 
340170

3100

311170

−−

−+

−−−
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Final Step: The last step in this process is to divide each row by its first non-zero 

entry (multiply by its reciprocal), in this case the values on the main diagonal. 

)1(3100

)17(340170

)51(510051
1

1

−

−−− −

−

 

Thus, x = 1, y = 2, z = -3. 


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−

−−

3100
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Figure 5. Concluding steps for solving Example 2 using the alternative Gaussian approach. 

 

Showing students how to solve systems of linear 

equations using the alternative version of Gaussian 

elimination allows them to avoid becoming inundated 

with fraction computations. For Example 2, if the 

operation between any two integers counts as one 

computation, then using the traditional method to solve 

the system of equations results in 58 computations; the 

alternative method results in 46 computations. Because 

the alternative method produced 21% fewer 

computations than the traditional method, students are 

less likely to get lost in the intermediate computations 

and are more able to focus on the overall purpose of 

the method. 

Note again that the alternative method can be used 

for systems of rational equations and can be followed 

fairly mechanically for rational systems containing n 

equations with n variables. In the event that the system 

of equations has infinitely many solutions or no 

solution, the idea behind the alternative method is the 

same: get 0’s for entries above and below the leading 

non-zero entry in each row, then divide each row by 

the value of this non-zero entry. The following 

example illustrates this point (Example 3 in Figure 6).
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Step 1: Recopy from the original system of equations into augmented matrix form. 
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− 121812

7069

51346

 

Step 2: Multiply R1 and R2 in such a way that you create oppositely signed common 

multiples in entries a1,1 and a2,1 as shown below.   

)2(7069

)3(51346 −

 

Adding and then substituting the answer for R2 results in a 0 in entry a2,1. 

13900

1401218

15391218

−−

+

−−−−
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Step 3: Multiply R1 and R3 in such a way that you create oppositely signed common 

multiples in positions a1,1 and a3,1.    

)1(121812

)2(51346

−

−
 

Adding and then substituting the answer for R3 results in a 0 in entry a3,1. 

22700

121812

1026812

−

−+

−−−−
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Figure 6. Beginning steps of solution for Example 3. 

Looking at the preceding matrix, we have a 0 in 

position a2,2, so I cannot use it to eliminate the 4 in 

position a1,2; and since I have a 0 in position a3,2, I do 

not benefit from switching row 2 and row 3. Thus, I 

can focus our attention on -39 in position a2,3.  (I could 

also focus our attention on -27, but the end result 

would not change). The objective is still the same: get 

“0’s” in the entries above and below -39 (Figures 7a 

and 7b).  

 

Step 4: Multiply R1 and R2 in such a way that you create oppositely signed common 

multiples in positions a1,3 and a2,3. 

)1(13900

)3(51346

−−
 

Adding and then substituting the answer in for R1 results in a 0 in position a1,3. 
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Figure 7a. Continuation of solution for Example 3. 
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Step 5: Multiply R2 and R3 in such a way that you create oppositely signed common 

multiples in positions a2,3 and a3,3.  

)39(22700

)27(13900

−−

−−
 

Adding and then substituting the answer in for R3 results in a 0 in position a3,3.. 

105000

78105300

27105300

−

−+

−−
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Figure 7b. Continuation of solution for Example 3.

 
 

Based on the previous matrix (Figures 7a and 7b) 

we can see that the system of equations does not have a 

solution since row 3 states that 0 = -105 (clearly a false 

statement). If we wanted to finish simplifying the 

matrix, we would divide rows 1 and 2 by the values of 

their leading non-zero entries to get the following 

(Figure 8).  

 

Final Step: 

R1 →÷18 R1 

R2 →−÷ 39 R2 


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


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



−105000
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01

39
1

9
7

3
2

 

Figure 8. Final steps of solution for Example 3. 

I hope that those who have not considered this 

alternative method will see the possible advantages for 

themselves and their students. First, this method may 

increase the accessibility of matrix material for 

students with weaknesses in fractions. Next, the 

method has the potential to increase the speed and 

accuracy of computations for students and teachers 

alike by the substitution of integer computations for 

rational number computations. I have found that some 

students avoid fractions by using decimal 

approximations, sacrificing precision. However, with 

this method, teachers can still require the precision of 

fractional solutions without the excessive mire of 

fractions, potentially encouraging more student effort 

and success. Finally, teachers who are wary of 

requiring extensive fractional computations may be 

freed by this method to have a greater flexibility in 

problem selection.   
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