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Sense Making as Motivation in Doing Mathematics: Results 
from Two Studies 

Mary Mueller, Dina Yankelewitz, & Carolyn Maher  
 

 
In this article, we present episodes from two qualitative research studies. The studies focus on students of 

different ages and populations and their work on different mathematical tasks. We examine the commonalities 

in environment, tools, and teacher-student interactions that are key influences on the positive dispositions 

engendered in the students and their interest and engagement in mathematics. In addition, we hypothesize that 

these positive dispositions in mathematics lead to student reasoning and, thus, mathematical understanding. The 

resulting framework is supported by other educational research and suggests ways that the standards can be 

implemented in diverse classrooms in order to achieve optimal student engagement and learning.  

 

 

The National Council of Teachers of Mathematics 

(NCTM, 2000) describes a vision for mathematics 

education focusing on conceptual understanding. This 

vision includes students engaged in hands-on activities 

that incorporate problem solving, reasoning and proof, 

real-world connections, multiple representations, and 

mathematical communication. NCTM and others have 

prepared multiple documents and resources (e.g., 

Chambers, 2002; Germain-McCarthy, 2001; NCTM, 

2000; Stiff & Curcio, 1999) to support teachers in 

achieving this vision and putting the standards into 

practice. However, differences in age, gender, 

ethnicity, and school culture often impede the 

implementation of successful teaching practice in 

mathematics classrooms and prevent students from 

taking ownership of mathematical ideas in the ways 

that have been envisioned.  

While NCTM addresses factors such as classroom 

environment and mathematical tasks, this provides an 

incomplete picture of how to build students’ 

conceptual understanding. For example, motivation to 

learn is pivotal in students’ attainment of 

understanding in all content areas (Middleton & 

Spanias, 1999), but the NCTM vision does not 

explicate how to help students experience motivation 

as they learn mathematics. We have developed a 

framework for mathematics teaching and learning that 

provides this missing link. It provides teachers and 

researchers with a conceptual tool that explains how 

students build the positive attitudes (motivation, 

autonomy, self-efficacy, and positive dispositions) 

towards mathematics that are necessary to engage in 

mathematical reasoning. We believe that this approach 

that can be implemented across the spectrum of 

mathematics classrooms in the US.   

Our research focuses on students who are working 

collaboratively as they engage in mathematical 

problem solving. We videotaped students as they 

engaged in mathematical tasks and then analyzed the 

reasoning that occurred as they worked to formulate 

strategies and defend their solutions. We have found 

that, although the demographics of the groups of 

students and the tasks may be different, the reasoning 

and subsequent understanding that occurs is quite 

similar.  

In this article, we present two episodes from our 

research, focusing on students of different ages and 

populations as they work on different mathematical 

tasks. We then examine the commonalities in 

environment, tools, and teacher-student interactions 

that are key influences both on the positive attitudes 

towards mathematics engendered in the students and 

on their engagement in mathematics. We hypothesize 

that these positive attitudes towards mathematics lead 

to student reasoning and, thus, mathematical 

understanding. Based on our research, we created a 
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framework for teaching and learning that identifies the 

key factors in encouraging positive attitudes in the 

mathematics classroom as well as their role in enabling 

student reasoning and understanding. We support this 

framework using the extensive literature base centering 

on students’ motivation in the mathematics classroom. 

The resulting framework suggests ways that the 

standards can be implemented in diverse classrooms in 

order to achieve optimal student engagement and 

learning. Although the development of our framework 

began with our data and then was supported by the 

literature, we begin by presenting the supporting 

literature in order to give the readers a background for 

the framework.  

The Role of Intrinsic Motivation 

In our framework, there are four factors that 

mediate between elements in the classroom 

environment, such as tasks, and the development of 

conceptual understanding through mathematical 

reasoning. These four factors are autonomy, instrinsic 

motivation, self-efficacy and positive dispositions 

towards mathematics. Because the literature 

concerning all four of these factors is interrelated, we 

have picked one factor, intrinsic motivation, to 

organize our discussion around.  

All students must be motivated in some way to 

engage in mathematical activity, however, the nature of 

that motivation largely determines the success of their 

endeavor. In particular, students’ motivations can be 

divided into two distinct types: extrinsic motivation 

and intrinsic motivation. Extrinsically motivated 

students engage in learning for external rewards, such 

as teacher and peer approval and good grades. These 

students do not necessarily acquire a sense of 

ownership of the mathematics that they study; instead 

they focus on praise from teachers, parents and peers 

and avoiding punishment or negative feedback 

(Middleton & Spanias, 1999). In contrast, students who 

are intrinsically motivated to learn mathematics are 

driven by their own pursuit of knowledge and 

understanding (Middleton & Spanias, 1999). They 

engage in tasks due to a sense of accomplishment and 

enjoyment and view learning as impacting their self-

images (Middleton, 1995). Intrinsically motivated 

students, therefore, focus on understanding concepts. 

Thus, intrinsic, rather than extrinsic, motivation 

benefits students in the process and results of 

mathematical activities. 

Sources of Intrinsic Motivation 

Researchers (Deci & Ryan, 1985; Hidi, 2000; 

Renninger, 2000) have found that sources of intrinsic 

motivation include perceptions of autonomy, interests 

in given tasks, and the need for competence. Brophy 

(1999) concurs and notes that a supportive social 

context, challenging activities, and student interest and 

value in learning are crucial to the development of 

intrinsic motivation.  

 Autonomous students, in attending to problem 

situations mathematically, rely on their own 

mathematical facilities and use their own resources to 

make decisions and make sense of their strategies 

(Kamii,1985; Yackel & Cobb, 1996). Autonomy 

promotes persistence on tasks and thus leads to higher 

levels of intrinsic motivation (Deci, Nezdik, & 

Sheinman, 1981; Deci & Ryan, 1987; Stefanou, 

Perencevich, DiCinti, & Turner, 2004). Furthermore, 

through participation in classroom activities, 

mathematically autonomous students begin to rely on 

their own reasoning rather than on that of the teacher 

(Cobb, Stephan, McClain, & Gravemeijer, 2001; 

Forman, 2003) and thus become arbitrators of what 

makes sense.  

Studies show that teacher support and classroom 

environments play a crucial role in the development of 

another source of intrinsic motivation, namely, positive 

(or negative) dispositions toward mathematics 

(Bransford, Hasselbring, Barron, Kulewicz, Littlefield, 

& Goin, 1988; Cobb, Wood, Yackel, & Perlwitz, 1992; 

Middleton, 1995; Middleton & Spanias, 1999). 

According to NCTM (2000), “More than just a 

physical setting … the classroom environment 

communicates subtle messages about what is valued in 

learning and doing mathematics (p. 18). The document 

then describes the implementation of challenging tasks 

that challenge students intellectually and motivate 

them through real-world connections and multiple 

solution paths (NCTM, 2000). Stein, Smith, 

Henningsen, and Silver (2000) stress that teachers need 

be thoughtful about the tasks that they present to 

students and use care to present and sustain cognitively 

complex tasks. They suggest that during the problem 

solving implementation phase, teachers often reduce 

the cognitive complexity of tasks. Overall, when 

students are presented with meaningful, relevant, and 

challenging tasks; offered the opportunity to act 

autonomously and develop self-control over learning; 

encouraged to focus on the process rather than the 

product; and provided with constructive feedback, they 

become intrinsically motivated to succeed (Urdan & 

Turner, 2005). 

Effects of Intrinsic Motivation  

Intrinsic motivation leads to self-efficacy, an 

individual’s beliefs about their own ability to perform 
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specific tasks in specific situations (Bandura, 1986; 

Pajares, 1996). Students’ self-efficacy beliefs often 

predict their ability to succeed in a particular situation 

(Bandura, 1986). Specifically, in mathematics, research 

has shown that self-efficacy is a clear predictor of 

students’ academic performance (Mousoulides & 

Philippou, 2005; Pintrich & De Groot, 1990). 

Furthermore, studies suggest that students with highly 

developed self-efficacy beliefs utilize cognitive and 

metacognitive learning strategies more vigorously 

while being more aware of their own motivational 

beliefs (Mousoulides & Philippou, 2005; Pintrich, 

1999). 

Unlike sources of extrinsic motivation, which need 

to be constantly reinforced, research shows that the 

common sources of intrinsic motivation are reinforced 

when students are encouraged to develop their self-

efficacy (Urdan & Turner, 2005), For example, 

intrinsic motivation helps students succeed at a given 

learning objective, thereby further developing students’ 

self-efficacy.In general, students are more likely to 

engage and persist in tasks when they believe they 

have the ability to succeed (Urdan & Turner, 2005). 

Therefore, intrinsic motivation can lead to an increased 

willingness to engage in reasoning activities.   

In summary, research shows that when students are 

intrinsically motivated to learn mathematics, they 

spend more time on-task, tend to be more persistent, 

and are confident in using different, or more 

challenging, strategies to solve mathematical problems 

(Lepper, 1988; Lepper & Henderlong, 2000). These 

qualities of mathematical learners better enable them to 

actualize the recommendations put forth by NCTM 

(2000) and to master key mathematical processes in 

their pursuit of understanding mathematics. Intrinsic 

motivation, then, is correlated with self-efficacy and 

positive dispositions towards a conceptual 

understanding of mathematics, whereas extrinsic 

motivation results in merely a superficial grasp of the 

information presented. 

Results from Two Studies 

Through a combination of cross-cultural and 

longitudinal studies we have observed that a mixture of 

factors contribute to students’ motivation to participate 

in mathematics and their dispositions towards 

mathematics (for details on our methodologies, see 

Mueller, 2007; Mueller & Maher, 2010; Mueller, 

Yankelewitz, & Maher, 2010; Yankelewitz, 2009; 

Yankelewitz, Mueller, & Maher, 2010). These include 

classroom environment, teacher questioning that 

evokes meaningful support of conjectures, and well-

designed tasks. Together, these factors positively 

influence the establishment of favorable dispositions 

towards learning mathematics. In their quest to make 

sense of appropriately challenging tasks, students enjoy 

the pursuit of meaning and thereby become 

intrinsically motivated to engage in mathematics. 

In this paper we present results from two research 

studies investigating students’ mathematics learning. In 

particular, we present specific examples of elementary 

and middle school students who demonstrated sense 

making and higher order reasoning when working on 

mathematical tasks. In these episodes, the students 

were engaged, motivated, and, importantly, confident 

in their ability to offer and defend mathematical 

solutions; they demonstrated positive dispositions 

towards mathematics. We identified student behaviors 

that indicated confidence in mathematics and a high 

level of engagement. These behaviors include 

perseverance; the ability to consider more challenging, 

alternative solutions; and the length of time spent of 

the task. In the discussion that follows, we analyze the 

commonalities in the two teaching experiments, and 

consider how these commonalities may have positively 

influenced the level of motivation and confidence that 

students exhibited as they worked on mathematical 

tasks. In the discussion, we use our findings to define a 

framework that can be used to inform a teaching 

practice that will motivate students and encourage 

student engagement and mathematical understanding. 

Data Analysis and Results 

The episodes presented below come from two data 

sets. Data from the first study is drawn from sessions 

during an informal after-school mathematics program 

in which 24 sixth-grade students from a low 

socioeconomic urban community worked on open-

ended tasks involving fractions. The students 

represented a wide range of abilities and thus their 

mathematical levels ranged from those who were 

enrolled in remedial mathematics to those who were 

successful in regular mathematics classrooms. The 

present discussion focuses on one table of four 

students, two boys and two girls. 

The second source of data includes segments from 

sessions in which fourth and fifth grade students from a 

suburban school investigated problems in counting and 

combinatorics. This data is drawn from a longitudinal 

study of children’s mathematical thinking. As part of 

the students’ regular school day, researchers led the 

students in exploring open-ended tasks during which 

students were expected to justify their solutions to the 

satisfaction of their peers. These strands of tasks were 

separate from the school-mandated curriculum. 

Because of space limitations, we give examples of one 
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task from each data set, one involving fractions and the 

other focusing on combinatorics. 

Episode 1: Reasoning about Fractions in the Sixth 

Grade 

The students in the first study worked 

collaboratively on tasks involving fraction 

relationships. Cuisenaire
®
 rods (see Figure 1) were 

available and students were encouraged to build 

models. A set of Cuisenaire rods contains 10 colored 

wooden or plastic rods that increase in length by 

increments of one centimeter. For these activities, the 

rods have variable number names and fixed color 

names. The colors increased incrementally as follows: 

white, light green, purple, yellow dark green, black 

brown, blue, and orange.  

 

 
Figure 1. “Staircase” Model of Cuisenaire Rods. 

 

Students were encouraged to build models to 

represent fraction tasks. For example, in one task, the 

blue rod was given the number name one and students 

initially worked on naming the red rod (two-ninths) 

and the light green rod (three-ninths or one-third). 

When the group completed this task, they initiated their 

own task of naming all of the rods in the set, given that 

the blue rod was named one. 

Chanel used the staircase model (shown in Figure 

1) to incrementally name the remainder of the rods 

beginning with naming the white rod one-ninth. As she 

was working, she said the names of all of the rods, 

“One-ninth, two-ninths, three-ninths, four-ninths, five-

ninths, six-ninths, seven-ninths, eight-ninths, nine 

ninths, ten..– wow, oh, I gotta think about that one ….. 

nine-tenths”.  

Disequilibrium. The teacher/researcher 

encouraged Chanel to share her problem with Dante. 

Chanel showed Dante her strategy of using the 

staircase to name the rods and explained the dilemma 

of naming the orange rod, “See this is One-ninth, two-

ninths, three-ninths, four-ninths, five ninths, six-ninths, 

seven-ninths, eight-ninths, nine-ninths - what’s this 

one?” Dante replied, “That would be ten-ninths. 

Actually that should be one. That would start the new 

one (one-tenth)”. Chanel and Michael then named the 

blue rod “a whole”. The students worked for a few 

more minutes and then Dante explained that he had 

overhead another table naming the rods. 

Dante:    Why are they calling it ten-ninths and [it] 

ends at ninths?  

Michael: Not the orange one. The orange one’s a 

whole.  

Dante: But I’m hearing from the other group 

from over here, they calling it ten-ninths. 

Michael:  Don’t listen to them! The orange one is a 

whole because it takes ten of these to 

make one.  

Dante: I’m hearing it because they speaking out 

loud. They’re calling it ten-ninths 

Michael: They might be wrong! … 

Chanel: Let me tell you something, how can they 

call it ten-ninths if the denominator is 

smaller than the numerator?  

Dante: Yeah, how is the numerator bigger than 

the denominator? It ends at the 

denominator and starts a new one. See 

you making me lose my brain. 

A teacher/researcher joined the group and asked 

what the students were working on. Dante presented 

his argument of naming the orange rod one-tenth and 

explained that “it starts a new one”. The 

teacher/researcher reminded him that the white rod was 

named one-ninth and that this fact could not change. 

Again she asked him for the name of the blue rod and 

he stated, “It would probably be ten-ninths”. When 

prompted, Dante explained that the length of ten white 

rods was equivalent to the length of an orange rod.  

The teacher/researcher asked Dante to convince his 

partners that this was true.  

Chanel:  No, because I don’t believe you because–  

Michael:  I thought it was a whole.  

Dante:  But how can the numerator be bigger 

than the denominator?  

T/R: It can. It is. This is an example of where 

the numerator is bigger than the 

denominator.  
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Chanel:  But the denominator can’t be bigger 

than the numerator, I thought.  

Michael: That’s the law of facts.  

T/R: Who told you that? 

Chanel:  My teacher. 

Dante: One of our teachers. 

Direct reasoning. The students continued working 

on the task. At the end of the session students were 

asked to share their work. Another student explained 

that she named the orange rod using a model of two 

yellow rods, “We found out the denominator doesn’t 

have to be larger than the numerator because we found 

out that two yellows [each] equal five-ninths so five-

ninths plus five-ninths equals ten-ninths.” Another 

student explained that the orange rod could also be 

named one and one-ninth and used a model of a train 

of a blue rod and a white rod lined up next to the 

orange rod to explain (see Figure 2), “If you put them 

together then this means that it’s ten-ninths also known 

as one and one-ninth.” 

 

 

 
 

Figure 2. A train of rods to show that 
9
10

9
1

9
9

=+  or 

9
11  

 

Finally, Dante came to the front of the class and 

explained that he found a different way to name the 

orange rod. Building a model of an orange rod lined up 

next to two purple rods and a red rod (see Figure 3), he 

explained that the purple rods were each named four-

ninths and therefore together they were eight-ninths; 

the red rod was named two-ninths and therefore the 

total was eight-ninths plus two-ninths or ten-ninths, 

“four and four are eight so which will make it eight-

ninths right here and then plus two to make it ten-

ninths.”  

 

 
 

Figure 3. A train of rods to show 

that
9
10

9
2

9
4

9
4

=++ . 

 

In the beginning of the session described above, 

Dante and his partners were convinced that a fraction’s 

numerator could not be greater than its denominator. 

At some point it seems that they were taught about 

improper fractions and may have internalized this to 

mean incorrect fractions. The children referred to this 

rule as “the law of facts” and, when presented with the 

task, although they visually saw that the orange rod 

was equivalent to ten white rods (or ten-ninths), they 

resisted using this nomenclature. We highlight this 

episode to show that the students did not simply accept 

the rule that they recalled and move on to the next task. 

Instead they heard another group naming the orange 

rod ten-ninths and grappled with the discrepancy 

between this name and their rule. Remaining engaged 

in the task, the students focused on sense making; they 

were motivated to make sense of the models they built 

and in doing so exhibited confidence in their solutions. 

For over an hour, Dante attempted to make sense of his 

solution by building alternative models, sharing his 

ideas, conjectures, and solutions, questioning the 

teacher, and revisiting the problem. When faced with a 

discrepancy between what he had previously learned 

and the concrete model that he built, Dante relied on 

reasoning, rather than memorized facts, to convince 

himself and others of what made sense. In particular, 

he relied on his understanding of the model that he had 

constructed to make sense of the fraction relationships.  

This quest for sense making triggered the use of a 

variety of strategies, and the success of meaning-

building led to persistence and flexibility in thinking, 

which, as described by Lepper and Henderlong (2000), 

are positively correlated with self-efficacy. Dante’s 

self-efficacy gave him the confidence and autonomy to 

move beyond his erroneous understanding that was 

based on previous memorized facts. Similarly to 

discussions about autonomy from Kamii (1985) and 

Yackel and Cobb (1996), this autonomy encouraged 

Dante to believe in his own mathematical ability and 

use his own resources to make sense of his model. This 

autonomy, coupled with his positive dispositions 

toward mathematics, allowed him to use reasoning to 

make sense of and fully understand the mathematics 

inherent in the problem.  

Episode 2: Reasoning about Combinatorics in the 

Fourth and Fifth Grades 

In the second study, fourth- and fifth-grade 

students were introduced to combinatorial tasks. The 

students were given Unifix cubes and were asked to 

find all combinations of towers that were four tall 

when selecting from cubes of two colors. Over the 

course of the two years, students revisited the task in 
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various settings. This provided multiple opportunities 

for them to think about and refine their thinking about 

the problem. 

Stephanie, along with her partner, Dana, first 

constructed all possible towers four cubes tall by 

finding patterns of towers and searching for duplicates. 

After her first attempt to find all possible towers, 

Stephanie organized her groups of towers according to 

color categories (e.g., exactly one of a color and 

exactly two of a color adjacent to each other) in order 

to justify her count of 16 towers, thus she organized the 

towers by cases (see Figure 4). Stephanie then used 

this organization by cases to find all possible towers of 

heights three cubes tall, two cubes tall and one cube 

tall when selecting from two colors.  

 

 
Figure 4. Stephanie’s organization of towers by cases. 

 

During further investigation, Stephanie noticed a 

pattern in the sequence of total number of towers for 

each height classification: “Two, four, eight, sixteen… 

that’s weird! Look! Two times 2 is 4, 4 times 2 is 8, 

and 8 times 2 is 16. It goes like a pattern! You have the 

2 times 2 equals the 4, the 4 times 2 equals the 8 and 

the 8 times 2 equals the 16.” A few minutes later, 

Stephanie gave a rule to describe a method for 

generating towers, “all you have to do is take the last 

number that you had and multiply by two.”  

 Stephanie’s persistent attempts to make sense 

of the problem enabled her to think about the problem 

in flexible, yet durable, ways. She used multiple forms 

of reasoning to examine the problem from different 

angles and was confident in her findings. She was 

motivated by her own discoveries and the chance to 

create and share her own conjectures.  

Milin also used cases to organize towers five cubes 

tall. He then went back to the problem and used 

simpler problems of towers four cubes tall and three 

cubes tall to build on to towers five cubes tall. While 

his partners based their arguments on number patterns 

and cases, Milin explained his solution using an 

inductive argument. Milin’s explanation in each 

instance was based on adding on to a shorter tower to 

form exactly two towers that were one cube taller (see 

Figure 5). For example, when asked to explain why he 

created four towers from two towers, Milin explained:  

Milin: [pointing to his towers that were one cube 

high] Because – for each one of them, you could 

add … two more – because there’s … a blue, and a 

red- … for red you put a black on top and a red on 

top – I mean a blue on top instead of a black. And 

blue – you put a blue on top and a red on top – and 

you keep doing that.

 

 
Figure 5. Milin’s inductive method of generating and organizing towers. 

 

 

 Blue   Red 
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Later in the year, four students participated in a 

group session, during which Stephanie and Milin 

presented their solutions to the towers problem. The 

next year, in the fifth grade, when the students again 

thought about this problem, Stephanie worked with 

Matt to find all tower combinations. Initially, they used 

trial and error to find as many combinations as they 

could. However, they only found twelve combinations. 

Stephanie remembered the pattern that she had 

discovered the year before. 

Stephanie: Well a couple of us figured out a 

theory because we used to see a 

pattern forming. If you multiply the 

last problem by two, you get the 

answer for the next problem. But you 

have to get all the answers. See, this 

didn't work out because we don't have 

all the answers here. 

Matt: I thought we did. 

Stephanie: No. I mean all the answers, all the 

answers we can get . . . I don't know 

what happened! Because I am 

positive it works. I have my papers at 

home that say it works.  

Persistence. Stephanie and Matt worked to find 

more tower combinations, but their search proved 

unsuccessful. Stephanie insisted that there were more 

combinations. 

Stephanie: I don’t know how it worked. I know 

it worked. I just don’t know how to 

prove it because I’m stumped. 

Matt: Steph! Maybe it didn’t work! 

Stephanie: Oh no. No. Because I’m pretty sure it 

would… I think we goofed because 

I’m still sticking with my two thing. 

I’m convinced that I goofed, that I 

messed up because I know that… 

Flexible Thinking. The teacher/researcher 

encouraged Stephanie and Matt to discuss the problem 

with other students. Stephanie and Matt approached 

other groups to see how they had solved the problem. 

They visited Milin and Michelle, who had been 

discussing the inductive method of finding all tower 

combinations. After hearing Michelle’s explanation of 

Milin’s method, Matt adopted that method and told 

other students about it. Stephanie attempted to explain 

Milin’s strategy to others, and, after the 

teacher/researcher questioned Stephanie about her 

explanation, she returned to her seat to work on 

refining her justification. Later in the session, the 

teacher/researcher again asked Stephanie to explain her 

original prediction of the number of four-tall towers 

using the inductive method. This time she 

demonstrated a newfound understanding and 

enthusiastically presented the solution to the class. 

The motivation to make sense of the mathematical 

task and the confidence in the power of their own 

reasoning exhibited by this young group of students is 

evident from the transcripts and narrative above. In 

addition, the students exhibited characteristics that are 

correlated with intrinsic motivation (e.g., Lepper & 

Henderlong, 2000), including perseverance, the length 

of time spent on the task, and the students’ flexibility 

of thought as they considered and adopted the ideas of 

others. Stephanie’s investigations are especially 

interesting. Although she had previously solved the 

problem and was certain of her previous solution, 

Stephanie’s autonomy motivated her to continue to 

work on the problem until she was convinced that her 

strategy made sense. Rather than accept the solutions 

of her classmates, Stephanie persisted in verifying her 

model in order to make sense of the mathematics. The 

episode described took a full class period, during 

which the students were actively engaged in solving 

the task. Stephanie insisted on rethinking the problem, 

eventually learning from Milin’s explanation, and then 

she used her newfound knowledge to reason correctly 

about the task and verify her solution. Similar to Dante, 

she persisted in understanding why her solution 

worked and insisted on reasoning about the problem, 

thereby successfully solving and understanding the 

mathematical task. 

Discussion 

Both highlighted tasks, one dealing with fraction 

ideas and the other with combinatorics, engaged 

students in sense making. The students described in the 

above episodes demonstrated confidence in their own 

understanding as they justified their solutions in the 

presence of their peers, even as their partners offered 

alternate representations. It is important to note that the 

episodes described above are exemplars of numerous 

similar incidents involving many of the students. 

Students developed this confidence as they were 

encouraged to defend their solutions first in their small 

groups and then in the whole class setting. They relied 

on their own models and justifications and did not seek 

approval from an authority or guidance from the 

teacher/researchers for validation of their ideas. These 

findings correspond with Francisco and Maher’s 

(2005) findings that certain classroom factors promote 

mathematical reasoning. The factors identified by 

Francisco and Maher include the posing of strands of 

challenging, open-ended tasks, establishing student 
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ownership of their ideas and mathematical activity, 

inviting collaboration, and requiring justification of 

solutions to problems, all of which were present in the 

episodes above.  

On the surface, the two classroom episodes seem 

quite different from one another. Specifically, the two 

classrooms were comprised of students of different 

ages and demographics. In addition, one of the 

highlighted tasks focuses on fractional relationships 

and the other on combinatorics. However, despite these 

dissimilarities, they share many characteristics that 

encouraged students to be intrinsically motivated by 

the mathematics that they learned.  

In both episodes, an environment was created that 

facilitated an active, responsible, and engaged 

community of learners: Students were encouraged to 

share ideas and representations and to listen to, 

question, and convince one another of their solutions. 

The teacher/researchers facilitated learning while 

affording students the opportunity to create and defend 

their own justifications. The teacher/researchers 

employed careful questioning and support when 

needed, but the students were the arbitrators of what 

made sense, giving them a sense of autonomy. 

Students had opportunities to be successful in building 

understanding and in communicating that 

understanding through the arguments they constructed 

to support their solutions. The resulting discussions 

also required students to develop representations of 

their thinking in order to express their ideas with 

others.  

In both groups, students used rich and varied forms 

of direct and indirect reasoning. The reasoning that 

emerged during these tasks may be explained, at least 

in part, by the open-ended nature of the two tasks: The 

tasks lent themselves to multiple strategies, and, hence, 

they elicited various forms of reasoning. The behaviors 

that were observed and the depth of reasoning 

exhibited can also be explained as a byproduct of 

intrinsic motivation. The students in both groups strove 

for conceptual understanding, were persistent in their 

endeavors, and displayed confidence in their final 

solutions.  

Perhaps most importantly, in both episodes 

described, the students gained ownership of new 

mathematical ideas after being confronted with other 

students’ differing understanding of challenging tasks. 

In accordance with other research (Deci, Nezdik, & 

Sheinman, 1981; Deci & Ryan, 1987; Stefanou et al., 

2004), the students’ autonomy led to their perseverance 

to find or defend their solutions and further increased 

their intrinsic motivation to make sense of the tasks at 

hand. Rather than accept the solutions of their 

classmates, both Stephanie and Dante verified their 

own strategies using the models they built and, thus, 

relied on their own reasoning to gain mathematical 

understanding. Dante and Stephanie were both 

motivated to rethink their understanding and justify 

their solutions after being exposed to the ideas of 

others and being challenged by the researchers to make 

sense of the task. Dante and Stephanie are 

representative of the other students we worked with, 

who displayed the ability to think about the solutions 

of others and use their own models to make sense of 

and acquire these solutions as their own. The 

consistency of these behaviors among our diverse 

sample suggests that, given the correct environment, all 

students can reason mathematically and succeed in 

engaging in mathematics.  

Based on our analysis, we hypothesize that 

motivation and positive dispositions toward 

mathematics lead to mathematical reasoning, which, in 

turn, leads to understanding. Furthermore, we 

constructed a framework to show the relationship 

between contextual factors and the chain of events 

leading to conceptual understanding (Figure 6). Our 

framework begins with the posing of an open-ended, 

engaging, and challenging task that the students have 

the ability to solve. The task is supported by a carefully 

crafted learning environment, carefully planned 

facilitator roles and interventions, student 

collaboration, and the availability of mathematical 

tools.  

In the episodes described above, both challenging 

tasks allowed students to deploy their own, personal 

solution strategy. Both tasks encouraged students to 

work collaboratively and utilize mathematical tools. In 

addition, the teacher/researcher adopted the role of 

facilitator and allowed the students to grapple with 

their own strategies as they listened to the strategies of 

their peers. Stephanie was given the opportunity to 

work on the problem independently and with a partner. 

She then listened to the strategies of others before 

refining her own solution strategy. Likewise, Dante 

was given the space and time to work through his 

misconception that the numerator of a fraction could 

not be larger than the denominator.  

Due to the nature of the task and the environment, 

Dante and his peers were motivated to resolve the 

discrepancy and find a solution. As with Stephanie, 

after listening to the ideas of others, Dante worked to 

make sense of the problem himself and create his own 

justification. Both students spent over an hour 

developing their solutions. Their positive dispositions, 
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coupled with intrinsic motivation, gave them the 

confidence and desire to find a solution. This is 

apparent in the amount of time that they spent 

developing their solutions. Both students persevered 

even after a classmate had offered a viable solution. In 

both episodes, the students’ motivation to succeed at 

the tasks at hand led to feelings of self-efficacy and 

autonomy. Both Stephanie and Dante took the 

initiative to build several models and justifications in 

order to justify their solutions, first to themselves and 

then to the larger community. 

The students relied on reasoning, rather than 

memorized facts or the solutions of others, to convince 

themselves and others of what made sense. This 

reasoning led to their  mathematical  understanding.  In  

 
 

 

Figure 6. The relationship between contextual factors, motivation and other events leading to conceptual 

understanding. 
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particular, Dante proved to himself that 10/9 was a 

reasonable fraction and Stephanie was able to defend 

her doubling rule.  

In summary, in such a learning environment, 

students are encouraged to communicate their 

understandings of the task, and their ideas are valued 

and respected. This respect engenders students’ 

positive self-concepts in mathematics. At the same 

time, students become intrinsically motivated to 

succeed at mathematics. Intrinsic motivation fosters 

positive dispositions toward mathematics, which, in 

turn, encourage students to develop self-efficacy and 

mathematical autonomy as they discuss and share their 

understandings with their classmates. At the same time, 

students enjoy doing mathematics and develop 

ownership of their ideas. In such an environment and 

with such dispositions, students are more likely to 

engage in mathematical reasoning and, thus, acquire 

conceptual understanding.  

 Our framework and research suggest that with 

careful attention to developing appropriate and 

engaging tasks, a supportive mathematical 

environment, and timely teacher questioning, students 

can be encouraged to build positive dispositions 

towards mathematics in all mathematics classrooms. 

These positive dispositions towards mathematics, in 

turn, form the ideal conditions for achieving 

conceptual understandings of mathematics.  
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